Egoless Documentation

Mark Roth, 2006

The thing that everyone hates, but sooner or later we all have to deal with, is writing documentation. This, however, is not about the art of technical writing – I'm not going to talk about “tell 'em what you're going to tell 'em, tell 'em it, then tell 'em what you told 'em”. Instead, this is about what happens after you write you're deathless prose, and how to make it something that other people will actually use when you're not around.

Back in the early nineties, there was a short-lived programming dad called “egoless programming”. It took me several years to wrap my head around it, and I've seen some of its tenets moving into mainstream development. The core idea was that code should be reviewed by your peers, who would be expected to criticize it, and point out flaws and improvements. The expected results of this were not only better code, but petter programmers. I might note that it was called “egoless” because if you couldn't let your dealy beloved code go, and accept and make the recommended changes, your ego got a bruisin'.

As open source became a big thing, we are, in fact, seeing more and more of this happening as an expected and normal course of development, and even have it moving very seriously into the corporate world. In that world, of course, it's more frequently advocated than actually practiced, and “we've always done it that way”, or “that's not in scope for this change” will always trump revision.

Some years ago, having internalized egoless programing to a sufficient degree, I applied the same idea to documentation. The way I've implemented it is like this:

· I write up the best, most complete document I can, covering everything that I'm aware of. At the top, in the title information, I mark it very clearly “draft”. This is important, booth to avoid complaints from management, and to give warm fuzzies to the folks no whose time you are about to impose.

· Then I print of email copies to several people, some of whom need to be end users, and the others technical people who are intimate with what you are documenting. Then I get down on my knees, and beg them to rip,. shred, and rend the document, to tell me everything

· that I've forgotten to include;

· where what I've written is incomprehensible;

· where I've skipped steps, and

· what's simply incorrect.

· Now at least half of them, if they say anything at all, will tell you it's all wonderful, and they can't offer you any suggestions. These folks,regardless of how nice they are, or how friendly you are with them, are useless for this purpose, and you can probably skip them next time.

· From the rest, and you may have to bother them so that they;ll get around to it, you'll get responses ranging from what are minor details to what will entail major revisions. As you get them, remember that they are suggestions, and do not need to be put in as the authors wrote them. Compare and contrast what you've already written, and start doing the editing. If you like, make a compromise between what the criticism suggested and what you want ot say – remember, you are the author, and the last word. Just make sure that the final result addresses the issue, if it is a valid one that is in scope of the document. Don't let them give you criticism that results in scope creep.

· Once you've gotten all the responses and made the revisions, go over it thoroughly, at least to catch where you've cut-and-pasted without fitting it into the rest of the sentence. Then send copies, marked as draft v. 0.2, or the revised document to the folks who made the criticisms, and again beg them for criticism. Try to make sure that you get all their responses before you start on your next revisions, though you need to remember that they have other work, and this is probably not scheduled.

· When you get their second stage of criticism – and there should be less, unless they've realized that there was something they forgot to bring up the first time around, you need to make the changes, and then walk away from it for a day or so. When you come back to it, go over the while thing, all the way through, and don't skim. You will catch typos, grammatical errors, and misstatements.

· This time, when you get ready to send out copies, make sure to note that this is a final draft, or v. 0.9, or some such indicator, so that your reviewers will know that it's nearly done, and this may be the last time you'll be bothering them (for this document, at least).

Take in the final criticisms for the final rewrite, and you'll find that you have a document that is readable, accurate, and usable. Let me note that by “usable', I mean something that not only explains something, but that the person who needs to know it will actually be willing to read, rather than try to find you to bother.

Going through this process is never “fun” - it's never enjoyable to have others find fault with your work. On the other hand, it's all in the development process, rather than producing a final Work of Art, and then having it chewed up by management. Then, too, you can get out some of that irritation by bothering the folks you've asked to give the criticism to actually get around to it (they'll be putting it off). Even if you do that, the upshot will be that they'll make sure the document gets used because they were part of the writing.

In closing, I will note that at least once I've actually gone to five or six version, first, because I didn't wait for all the responses, and second, because folks would see the document and come back to me with yet more stuff that they had forgotten to mention, was relevant, that no one else knew about, and that I really did have to add. Even then, the document went official at about a real v. 0.4, and the rest were 1.x updates.

I hope this makes the whole process of creating documentation easier. At the very least, it will spread the pain, and as the old saying goes, pain shared is pain halved.

